如何在Linux上的C中递归列出目录?

我需要在C编程中递归列出所有目录和文件。 我已经研究了FTW,但是我所使用的2个操作系统(Fedora和Minix)中没有包括。 在过去的几个小时中,我从阅读的所有不同内容中开始感到头疼。

如果有人知道我的代码片段,那真是太好了,或者如果有人可以给我很好的指导,我将不胜感激。

Charlie asked 2019-11-14T02:00:59Z
5个解决方案
80 votes

为什么每个人都坚持一次又一次地重新发明轮子?

POSIX.1-2008对nftw64()函数进行了标准化,该函数也在Single Unix Specification v4(SuSv4)中进行了定义,并在Linux(glibc,nftw64()),OS X和大多数最新的BSD变体中可用。 它根本不是新的。

基于朴素的nftw64()/nftw()/errno == EOVERFLOW的实现几乎永远不会处理在遍历树时移动,重命名或删除目录或文件的情况,而_LARGEFILE64_SOURCE应该妥善处理它们。

例如,请考虑以下C程序,该程序列出了从当前工作目录或命令行中命名的每个目录或者命令行中命名的文件开始的目录树:

/* We want POSIX.1-2008 + XSI, i.e. SuSv4, features */
#define _XOPEN_SOURCE 700

/* Added on 2017-06-25:
   If the C library can support 64-bit file sizes
   and offsets, using the standard names,
   these defines tell the C library to do so. */
#define _LARGEFILE64_SOURCE
#define _FILE_OFFSET_BITS 64 

#include <stdlib.h>
#include <unistd.h>
#include <ftw.h>
#include <time.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>

/* POSIX.1 says each process has at least 20 file descriptors.
 * Three of those belong to the standard streams.
 * Here, we use a conservative estimate of 15 available;
 * assuming we use at most two for other uses in this program,
 * we should never run into any problems.
 * Most trees are shallower than that, so it is efficient.
 * Deeper trees are traversed fine, just a bit slower.
 * (Linux allows typically hundreds to thousands of open files,
 *  so you'll probably never see any issues even if you used
 *  a much higher value, say a couple of hundred, but
 *  15 is a safe, reasonable value.)
*/
#ifndef USE_FDS
#define USE_FDS 15
#endif

int print_entry(const char *filepath, const struct stat *info,
                const int typeflag, struct FTW *pathinfo)
{
    /* const char *const filename = filepath + pathinfo->base; */
    const double bytes = (double)info->st_size; /* Not exact if large! */
    struct tm mtime;

    localtime_r(&(info->st_mtime), &mtime);

    printf("%04d-%02d-%02d %02d:%02d:%02d",
           mtime.tm_year+1900, mtime.tm_mon+1, mtime.tm_mday,
           mtime.tm_hour, mtime.tm_min, mtime.tm_sec);

    if (bytes >= 1099511627776.0)
        printf(" %9.3f TiB", bytes / 1099511627776.0);
    else
    if (bytes >= 1073741824.0)
        printf(" %9.3f GiB", bytes / 1073741824.0);
    else
    if (bytes >= 1048576.0)
        printf(" %9.3f MiB", bytes / 1048576.0);
    else
    if (bytes >= 1024.0)
        printf(" %9.3f KiB", bytes / 1024.0);
    else
        printf(" %9.0f B  ", bytes);

    if (typeflag == FTW_SL) {
        char   *target;
        size_t  maxlen = 1023;
        ssize_t len;

        while (1) {

            target = malloc(maxlen + 1);
            if (target == NULL)
                return ENOMEM;

            len = readlink(filepath, target, maxlen);
            if (len == (ssize_t)-1) {
                const int saved_errno = errno;
                free(target);
                return saved_errno;
            }
            if (len >= (ssize_t)maxlen) {
                free(target);
                maxlen += 1024;
                continue;
            }

            target[len] = '\0';
            break;
        }

        printf(" %s -> %s\n", filepath, target);
        free(target);

    } else
    if (typeflag == FTW_SLN)
        printf(" %s (dangling symlink)\n", filepath);
    else
    if (typeflag == FTW_F)
        printf(" %s\n", filepath);
    else
    if (typeflag == FTW_D || typeflag == FTW_DP)
        printf(" %s/\n", filepath);
    else
    if (typeflag == FTW_DNR)
        printf(" %s/ (unreadable)\n", filepath);
    else
        printf(" %s (unknown)\n", filepath);

    return 0;
}


int print_directory_tree(const char *const dirpath)
{
    int result;

    /* Invalid directory path? */
    if (dirpath == NULL || *dirpath == '\0')
        return errno = EINVAL;

    result = nftw(dirpath, print_entry, USE_FDS, FTW_PHYS);
    if (result >= 0)
        errno = result;

    return errno;
}

int main(int argc, char *argv[])
{
    int arg;

    if (argc < 2) {

        if (print_directory_tree(".")) {
            fprintf(stderr, "%s.\n", strerror(errno));
            return EXIT_FAILURE;
        }

    } else {

        for (arg = 1; arg < argc; arg++) {
            if (print_directory_tree(argv[arg])) {
                fprintf(stderr, "%s.\n", strerror(errno));
                return EXIT_FAILURE;
            }
        }

    }

    return EXIT_SUCCESS;
}

上面的大多数代码在nftw64()中。其任务是打印出每个目录条目。 在nftw()中,我们告诉errno == EOVERFLOW对它看到的每个目录条目进行调用。

上面唯一的波浪细节是决定nftw64()应该使用多少个文件描述符。 如果您的程序在文件树遍历期间最多使用两个额外的文件描述符(除了标准流之外),则已知15是安全的(在所有具有nftw()且大多数与POSIX兼容的系统上)。

在Linux中,您可以使用nftw64()查找打开的文件的最大数量,并减去您与nftw()调用同时使用的数量,但是我不会打扰(除非我知道该实用程序将主要用于病理上较深的目录结构) 。 十五个描述符不限制树的深度; errno == EOVERFLOW变得更慢(如果从目录中查找目录比13个目录更深,则可能无法检测到目录中的更改,尽管权衡和检测更改的一般能力在系统和C库实现之间有所不同)。 只需使用这样的编译时常量即可使代码具有可移植性-它不仅应在Linux上运行,而且还应在Mac OS X和所有当前BSD变体以及大多数其他不太老的Unix变体上运行。

在评论中,Ruslan提到他们必须切换到nftw64(),因为它们具有需要64位大小/偏移量的文件系统条目,并且nftw()的“常规”版本因errno == EOVERFLOW而失败。正确的解决方案是不切换到特定于GLIBC的方法 64位函数,但要定义_LARGEFILE64_SOURCE_FILE_OFFSET_BITS 64。这些函数告诉C库,如果可能,请切换到64位文件大小和偏移量,同时使用标准函数(nftw()fstat()等)和类型名称(off_t等)。 )。

Nominal Animal answered 2019-11-14T02:02:25Z
60 votes

这是一个递归版本:

#include <unistd.h>
#include <sys/types.h>
#include <dirent.h>
#include <stdio.h>
#include <string.h>

void listdir(const char *name, int indent)
{
    DIR *dir;
    struct dirent *entry;

    if (!(dir = opendir(name)))
        return;

    while ((entry = readdir(dir)) != NULL) {
        if (entry->d_type == DT_DIR) {
            char path[1024];
            if (strcmp(entry->d_name, ".") == 0 || strcmp(entry->d_name, "..") == 0)
                continue;
            snprintf(path, sizeof(path), "%s/%s", name, entry->d_name);
            printf("%*s[%s]\n", indent, "", entry->d_name);
            listdir(path, indent + 2);
        } else {
            printf("%*s- %s\n", indent, "", entry->d_name);
        }
    }
    closedir(dir);
}

int main(void) {
    listdir(".", 0);
    return 0;
}
Lloyd Macrohon answered 2019-11-14T02:01:11Z
8 votes
int is_directory_we_want_to_list(const char *parent, char *name) {
  struct stat st_buf;
  if (!strcmp(".", name) || !strcmp("..", name))
    return 0;
  char *path = alloca(strlen(name) + strlen(parent) + 2);
  sprintf(path, "%s/%s", parent, name);
  stat(path, &st_buf);
  return S_ISDIR(st_buf.st_mode);
}

int list(const char *name) {
  DIR *dir = opendir(name);
  struct dirent *ent;
  while (ent = readdir(dir)) {
    char *entry_name = ent->d_name;
    printf("%s\n", entry_name);
    if (is_directory_we_want_to_list(name, entry_name)) {
      // You can consider using alloca instead.
      char *next = malloc(strlen(name) + strlen(entry_name) + 2);
      sprintf(next, "%s/%s", name, entry_name);
      list(next);
      free(next);
    }
  }
  closedir(dir);
}

在这种情况下值得略读的头文件:stat.h,dirent.h。 请记住,上面的代码不会检查可能发生的任何错误。

ftw.h中定义的ftw提供了一种完全不同的方法。

Jan answered 2019-11-14T02:02:58Z
5 votes

正如我在评论中提到的那样,我相信递归方法在此任务中有两个固有的缺陷。

第一个缺陷是对打开文件的限制。 此限制对深度遍历施加了限制。 如果有足够的子文件夹,则递归方法将中断。 (请参阅有关堆栈溢出的编辑)

第二个缺陷更加微妙。 递归方法使得很难测试硬链接。 如果文件夹树是循环的(由于硬链接),则递归方法将中断(希望不会出现堆栈溢出)。 (请参阅有关硬链接的编辑)

但是,通过使用单个文件描述符和链接列表替换递归来避免这些问题非常简单。

我认为这不是学校项目,并且递归是可选的。

这是一个示例应用程序。

使用a.out ./查看文件夹树。

我为宏和其他东西表示歉意...我通常使用内联函数,但是我认为,如果所有代码都在一个函数中,则遵循代码会更容易。

#include <dirent.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>

int main(int argc, char const *argv[]) {
  /* print use instruction unless a folder name was given */
  if (argc < 2)
    fprintf(stderr,
            "\nuse:\n"
            "    %s <directory>\n"
            "for example:\n"
            "    %s ./\n\n",
            argv[0], argv[0]),
        exit(0);

  /*************** a small linked list macro implementation ***************/

  typedef struct list_s {
    struct list_s *next;
    struct list_s *prev;
  } list_s;

#define LIST_INIT(name)                                                        \
  { .next = &name, .prev = &name }

#define LIST_PUSH(dest, node)                                                  \
  do {                                                                         \
    (node)->next = (dest)->next;                                               \
    (node)->prev = (dest);                                                     \
    (node)->next->prev = (node);                                               \
    (dest)->next = (node);                                                     \
  } while (0);

#define LIST_POP(list, var)                                                    \
  if ((list)->next == (list)) {                                                \
    var = NULL;                                                                \
  } else {                                                                     \
    var = (list)->next;                                                        \
    (list)->next = var->next;                                                  \
    var->next->prev = var->prev;                                               \
  }

  /*************** a record (file / folder) item type ***************/

  typedef struct record_s {
    /* this is a flat processing queue. */
    list_s queue;
    /* this will list all queued and processed folders (cyclic protection) */
    list_s folders;
    /* this will list all the completed items (siblings and such) */
    list_s list;
    /* unique ID */
    ino_t ino;
    /* name length */
    size_t len;
    /* name string */
    char name[];
  } record_s;

/* take a list_s pointer and convert it to the record_s pointer */
#define NODE2RECORD(node, list_name)                                           \
  ((record_s *)(((uintptr_t)(node)) -                                          \
                ((uintptr_t) & ((record_s *)0)->list_name)))

/* initializes a new record */
#define RECORD_INIT(name)                                                      \
  (record_s){.queue = LIST_INIT((name).queue),                                 \
             .folders = LIST_INIT((name).folders),                             \
             .list = LIST_INIT((name).list)}

  /*************** the actual code ***************/

  record_s records = RECORD_INIT(records);
  record_s *pos, *item;
  list_s *tmp;
  DIR *dir;
  struct dirent *entry;

  /* initialize the root folder record and add it to the queue */
  pos = malloc(sizeof(*pos) + strlen(argv[1]) + 2);
  *pos = RECORD_INIT(*pos);
  pos->len = strlen(argv[1]);
  memcpy(pos->name, argv[1], pos->len);
  if (pos->name[pos->len - 1] != '/')
    pos->name[pos->len++] = '/';
  pos->name[pos->len] = 0;
  /* push to queue, but also push to list (first item processed) */
  LIST_PUSH(&records.queue, &pos->queue);
  LIST_PUSH(&records.list, &pos->list);

  /* as long as the queue has items to be processed, do so */
  while (records.queue.next != &records.queue) {
    /* pop queued item */
    LIST_POP(&records.queue, tmp);
    /* collect record to process */
    pos = NODE2RECORD(tmp, queue);
    /* add record to the processed folder list */
    LIST_PUSH(&records.folders, &pos->folders);

    /* process the folder and add all folder data to current list */
    dir = opendir(pos->name);
    if (!dir)
      continue;

    while ((entry = readdir(dir)) != NULL) {

      /* create new item, copying it's path data and unique ID */
      item = malloc(sizeof(*item) + pos->len + entry->d_namlen + 2);
      *item = RECORD_INIT(*item);
      item->len = pos->len + entry->d_namlen;
      memcpy(item->name, pos->name, pos->len);
      memcpy(item->name + pos->len, entry->d_name, entry->d_namlen);
      item->name[item->len] = 0;
      item->ino = entry->d_ino;
      /* add item to the list, right after the `pos` item */
      LIST_PUSH(&pos->list, &item->list);

      /* unless it's a folder, we're done. */
      if (entry->d_type != DT_DIR)
        continue;

      /* test for '.' and '..' */
      if (entry->d_name[0] == '.' &&
          (entry->d_name[1] == 0 ||
           (entry->d_name[1] == '.' && entry->d_name[2] == 0)))
        continue;

      /* add folder marker */
      item->name[item->len++] = '/';
      item->name[item->len] = 0;

      /* test for cyclic processing */
      list_s *t = records.folders.next;
      while (t != &records.folders) {
        if (NODE2RECORD(t, folders)->ino == item->ino) {
          /* we already processed this folder! */
          break; /* this breaks from the small loop... */
        }
        t = t->next;
      }
      if (t != &records.folders)
        continue; /* if we broke from the small loop, entry is done */

      /* item is a new folder, add to queue */
      LIST_PUSH(&records.queue, &item->queue);
    }
    closedir(dir);
  }

  /*************** Printing the results and cleaning up ***************/
  while (records.list.next != &records.list) {
    /* pop list item */
    LIST_POP(&records.list, tmp);
    /* collect record to process */
    pos = NODE2RECORD(tmp, list);
    /* prepare for next iteration */
    LIST_POP(&records.list, tmp);
    fwrite(pos->name, pos->len, 1, stderr);
    fwrite("\n", 1, 1, stderr);
    free(pos);
  }
  return 0;
}

编辑

@Stargateur在评论中提到,递归代码可能会在达到打开文件限制之前溢出堆栈。

尽管我看不到堆栈溢出有什么更好的方法,但是只要过程在调用时不接近文件限制,此评估就可能是正确的。

@Stargateur在评论中提到的另一点是,递归代码的深度受子目录的最大数量限制(ext4文件系统上为64000),并且硬链接极不可能(因为硬链接不是文件夹) 在Linux / Unix上允许)。

如果代码在Linux上运行(根据问题,确实是好消息),这是个好消息,所以这个问题不是真正的问题(除非在macOS或Windows上运行代码)...尽管64K子文件夹 递归操作可能会将堆栈炸开。

话虽这么说,none递归选项仍然具有优势,例如能够轻松添加对处理项目数量的限制以及能够缓存结果。

附:

根据评论,这是不检查循环层次结构的代码的非递归版本。 它速度更快,应该足够安全,可以在不允许硬链接到文件夹的Linux机器上使用。

#include <dirent.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>

int main(int argc, char const *argv[]) {
  /* print use instruction unless a folder name was given */
  if (argc < 2)
    fprintf(stderr,
            "\nuse:\n"
            "    %s <directory>\n"
            "for example:\n"
            "    %s ./\n\n",
            argv[0], argv[0]),
        exit(0);

  /*************** a small linked list macro implementation ***************/

  typedef struct list_s {
    struct list_s *next;
    struct list_s *prev;
  } list_s;

#define LIST_INIT(name)                                                        \
  { .next = &name, .prev = &name }

#define LIST_PUSH(dest, node)                                                  \
  do {                                                                         \
    (node)->next = (dest)->next;                                               \
    (node)->prev = (dest);                                                     \
    (node)->next->prev = (node);                                               \
    (dest)->next = (node);                                                     \
  } while (0);

#define LIST_POP(list, var)                                                    \
  if ((list)->next == (list)) {                                                \
    var = NULL;                                                                \
  } else {                                                                     \
    var = (list)->next;                                                        \
    (list)->next = var->next;                                                  \
    var->next->prev = var->prev;                                               \
  }

  /*************** a record (file / folder) item type ***************/

  typedef struct record_s {
    /* this is a flat processing queue. */
    list_s queue;
    /* this will list all the completed items (siblings and such) */
    list_s list;
    /* unique ID */
    ino_t ino;
    /* name length */
    size_t len;
    /* name string */
    char name[];
  } record_s;

/* take a list_s pointer and convert it to the record_s pointer */
#define NODE2RECORD(node, list_name)                                           \
  ((record_s *)(((uintptr_t)(node)) -                                          \
                ((uintptr_t) & ((record_s *)0)->list_name)))

/* initializes a new record */
#define RECORD_INIT(name)                                                      \
  (record_s){.queue = LIST_INIT((name).queue), .list = LIST_INIT((name).list)}

  /*************** the actual code ***************/

  record_s records = RECORD_INIT(records);
  record_s *pos, *item;
  list_s *tmp;
  DIR *dir;
  struct dirent *entry;

  /* initialize the root folder record and add it to the queue */
  pos = malloc(sizeof(*pos) + strlen(argv[1]) + 2);
  *pos = RECORD_INIT(*pos);
  pos->len = strlen(argv[1]);
  memcpy(pos->name, argv[1], pos->len);
  if (pos->name[pos->len - 1] != '/')
    pos->name[pos->len++] = '/';
  pos->name[pos->len] = 0;
  /* push to queue, but also push to list (first item processed) */
  LIST_PUSH(&records.queue, &pos->queue);
  LIST_PUSH(&records.list, &pos->list);

  /* as long as the queue has items to be processed, do so */
  while (records.queue.next != &records.queue) {
    /* pop queued item */
    LIST_POP(&records.queue, tmp);
    /* collect record to process */
    pos = NODE2RECORD(tmp, queue);

    /* process the folder and add all folder data to current list */
    dir = opendir(pos->name);
    if (!dir)
      continue;

    while ((entry = readdir(dir)) != NULL) {

      /* create new item, copying it's path data and unique ID */
      item = malloc(sizeof(*item) + pos->len + entry->d_namlen + 2);
      *item = RECORD_INIT(*item);
      item->len = pos->len + entry->d_namlen;
      memcpy(item->name, pos->name, pos->len);
      memcpy(item->name + pos->len, entry->d_name, entry->d_namlen);
      item->name[item->len] = 0;
      item->ino = entry->d_ino;
      /* add item to the list, right after the `pos` item */
      LIST_PUSH(&pos->list, &item->list);

      /* unless it's a folder, we're done. */
      if (entry->d_type != DT_DIR)
        continue;

      /* test for '.' and '..' */
      if (entry->d_name[0] == '.' &&
          (entry->d_name[1] == 0 ||
           (entry->d_name[1] == '.' && entry->d_name[2] == 0)))
        continue;

      /* add folder marker */
      item->name[item->len++] = '/';
      item->name[item->len] = 0;

      /* item is a new folder, add to queue */
      LIST_PUSH(&records.queue, &item->queue);
    }
    closedir(dir);
  }

  /*************** Printing the results and cleaning up ***************/
  while (records.list.next != &records.list) {
    /* pop list item */
    LIST_POP(&records.list, tmp);
    /* collect record to process */
    pos = NODE2RECORD(tmp, list);
    /* prepare for next iteration */
    LIST_POP(&records.list, tmp);
    fwrite(pos->name, pos->len, 1, stderr);
    fwrite("\n", 1, 1, stderr);
    free(pos);
  }
  return 0;
}
Myst answered 2019-11-14T02:04:56Z
4 votes

这是一个递归的简化版本,但使用的堆栈空间少得多:

#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>
#include <dirent.h>

void listdir(char *path, size_t size) {
    DIR *dir;
    struct dirent *entry;
    size_t len = strlen(path);

    if (!(dir = opendir(path))) {
        fprintf(stderr, "path not found: %s: %s\n",
                path, strerror(errno));
        return;
    }

    puts(path);
    while ((entry = readdir(dir)) != NULL) {
        char *name = entry->d_name;
        if (entry->d_type == DT_DIR) {
            if (!strcmp(name, ".") || !strcmp(name, ".."))
                continue;
            if (len + strlen(name) + 2 > size) {
                fprintf(stderr, "path too long: %s/%s\n", path, name);
            } else {
                path[len] = '/';
                strcpy(path + len + 1, name);
                listdir(path, size);
                path[len] = '\0';
            }
        } else {
            printf("%s/%s\n", path, name);
        }
    }
    closedir(dir);
}

int main(void) {
    char path[1024] = ".";
    listdir(path, sizeof path);
    return 0;
}

在我的系统上,其输出与find .的输出完全相同

chqrlie answered 2019-11-14T02:05:30Z
translate from https://stackoverflow.com:/questions/8436841/how-to-recursively-list-directories-in-c-on-linux